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SUMMARY 

In this study, we examine the numerical simulation of transient viscoelastic flows with two moving free surfaces. A 
modified Galerkin finite element method is implemented to the two-dimensional non-steady motion of the fluid of 
the Oldroyd-B type. The fluid is initially placed between two parallel plates and bounded by two straight free 
boundaries. In this Lagrangian finite element method, the spatial mesh deforms in time along with the moving free 
boundaries. The unknown shape of the free surfaces is determined with the flow field u, v, T, p by the deformable 
finite element method, combined with a predictor-corrector scheme in an uncoupled fashion. The moving free 
surfaces and fluid motion of both Newtonian and non-Newtonian flows are investigated. The results include the 
influence of surface tension, fluid inertia and elasticity. 
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1. INTRODUCTION 

A free boundury, or free surface, problem is defined as a boundary value problem involving partial 
differential equations on domains in which the locations of the free boundary or boundaries are 
unknown. The unknown boundaries are called the free boundaries and they must be determined as part 
of the solution to the boundary value problem. A moving boundary problem is an initial value problem 
involving time-dependent, i.e. moving, free boundaries. A wide variety of physical phenomena involve 
moving free surfaces: e.g. jets,’ water waves,* ~avi t ies ,~ and material forming proce~ses.~ One of the 
most challenging tasks is to develop efficient numerical algorithms for tracking moving free 
s ~ r f a c e s . ~ . ~  A comprehensive account of numerical methods and techniques for treating Newtonian 
free surface flow problems may be found in the reviews by Yeung2 for inviscid flows and more recently 
by Floryan and Rasmussen.’ Free surfaces are intrinsic parts of any shape changing process. When 
non-Newtonian flows involve a free surface, the solution becomes even more difficult to obtain. 
Examples of non-Newtonian flows, in particular viscoelastic flows, are encountered in the area of 
polymer processing which has been rapidly developing in the plastics industry. 

One must acknowledge that the general characterization of non-Newtonian behaviour, by means of a 
functional constitutive equation, does not lead to tractable equations in any but the simplest of flow 
problems. Furthermore, even allowing for the significant simplfication that often results from a 
consideration of certain restricted classes of flows, the governing equations can still be much more 
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complicated in detail than the Navier-Stokes equations. This means that most flow problems in non- 
Newtonian fluid mechanics are more demanding from the numerical techniques point of view, and 
progress has been largely dependent on the speed and storage capacity of available computers. 

In material forming processes, such as film blowing' or extrusion,' the flow is steady and involves 
only one free surface. Steady viscoelastic flow problems with only one free surface are already so 
difficult to solve that one may easily predict the increased complexity and major computational cost 
associated with the addition of transient behaviour and another free surface. For example, flows with 
two moving free surfaces are relevant to blow molding and gas-assisted injection molding.103" 
Comprehensive reviews of available numerical techniques and published numerical simulation can be 
found in References 12-14 and 4. However, the problem of transient viscoelastic flow with two moving 
free surfaces remains challenging and unsolved. Serious progress will have to be made on the 
efficiency of the algorithms before one can afford the calculation of transient viscoelastic flows with 
two free boundaries. In this regard, Khayat" gave a perturbation approach and examined the influence 
of fluid elasticity and that of surface tension. 

Three aspects arise in the numerical treatment of a transient viscoleastic free surface flow problem: 
(1) the discrete representation for the flow field and free surfaces; (2) its approximated evolution in 
time; and (3) the manner in which the unknown variables are solved and the free surface location is 
determined. Concerning the third aspect, most work on free surface flows is divided into two basic 
approaches. In the first approach, since the location of the free surface is an additional degree of 
freedom, one more equation is needed in comparison with conventional problems with fixed 
boundaries. This additional equation can be solved as part of the complete system of nonlinear partial 
differential equations, including the additional dependent variable, i.e. location of the free surface. This 
is a coupled appr~ach . '~* '~  The second approach is the successive approximation method which uses a 
correction rule to modify the free surface shape. This is an uncoupled approach which was deveoped 
by Niche11 et al.' and also be Ryskin and Leal." Recently, similar techniques have been developed for 
various types of free surface  problem^.^^^^,^^ The uncoupled approach is easier to implement and will 
be used in this work. 

Adaptive methods using deforming finite element meshes were developed in the early 1980s for 
solving a broad range of moving boundary problems. A conceptual framework for this technique has 
been established by A similar algorithm is implemented in the present work for solving the 
transient viscoelastic flow with two free surfaces. The numerical procedure is based on the Galerkin 
finite element method on the deformable mesh, combined with a finite difference scheme in time. The 
Newton-Raphson iteration scheme is used to solve the resulting non-linear algebraic system of 
equations. The location of the free surfaces is determined by solving the kinematic boundary 
conditions at the two surfaces. A predictor-corrector method is used to locate the free surfaces after the 
flow field is determined. The method is applied to two-dimensional incompressible viscoelastic fluid 
contained between two parallel plates. The fluid is initially bounded by two straight free surfaces. The 
motion is set by the action of a driving pressure difference. The results obtained in the present study 
include both Newtonian and viscoelastic flows of the Oldroyd-B type. The effects of inertia, surface 
tension and elasticity are investigated. The results are relevant to the development of a reaslistic 
simulation and optimization of some polymer processing operations, in particular, blow molding and 
gas-assisted injection molding. 

2. PROBLEM FORMULATION 

Classical fluid dynamics is based on Newton's law which defines the viscosity of a fluid as the 
coefficient of proportionality between the shear stress and the velocity gradient. Newton's equation has 
been found to be successful in describing the flow phenomena of gases and liquids made up of small 
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molecules. However, polymeric fluids behave quite differently from liquids made up of small 
molecules. They do not obey the law of classical (Newtonian) fluid dynamics.24 A fluid that does not 
behave in accordance with Newton’s law is called a non-Newtonian fluid. Non-Newtonian fluid 
mechanics differ fkom classical Newtonian fluid mechanics in many important aspects. One of the most 
important differences is that the constitutive equation of nowNewtonian fluids varies from one flow 
type to another, which results in different governing equations, whereas in the classical situation the 
Navier-Stokes equations are accepted without question as governing equations. 

In the present work, the Oldroyd-B model is used as the constitutive equation for the non-Newtonian 
flow. It has been frequently used for developments in numerical simulation of polymeric flows. It has 
shown good predictive ability in some polymeric flows. Simultaneously, it has been found that the flow 
of such fluids is one of the most difficult models to simulate among the set of available constitutive 
equations. In this sense, the model has helped considerably in the development of numerical algorithms 
for modelling viscoelastic flow. 

The problem we consider is described in Figure 1. The initial geometry is taken to be a rectangle 
which contains the viscoelastic fluid between two parallel plates, with two straight free surfaces located 
at x = R1 and x = RZ. The fluid is forced to deform under the action of applied external pressure. The 
fluid is assumed to adhere to the two plates so that the no-slip boundary condition holds at y = 0 and 
y = L, L being the distance between the two plates. In the following section, the governing equations as 
well as the boundary conditions for the problem will be presented. 

2.1. Governing equations 

The motion of the fluid is dictated by the equations of conservation of mass and momentum. 
Compressibility effects can be neglected in most applications. These equations are written in terms of 
the flow velocity v, pressure p and stress z. Thus the continuity and momentum equations are 

p - =  Dv -Vp+ v .  z + f ,  
Dt 

where p denotes the density, f is any body force per unit volume, and DIDt is the material derivative. 

0 

X 

A P  - 

u = v = o  
R1 R2 

Figure 1 .  Transient viscoelastic flow with two free surfaces represented by the height functions g and h. Initial flow domain 
shown between the two dashed lines 
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The first major question posed in the simulation of a specific viscoelastic problem is the selection of 
a constitutive equation. A large body of established knowledge is available for the selection of 
appropriate constitutive equations. It should be pointed out that the identification of a suitable 
constitutive equation for polymer processing simulation is an unsolved problem. In this work, the 
viscoelastic nature of the fluid is introduced through the Oldroyd-B constitutive equation, for which the 
stress T is given as the sum of elastic and Newtonian contributions: 

7 = 71 -k T2. (3) 

T2 = 2p*D7 (4) 

The second term is the Newtonian contribution to the stress and is equal to 

where D is the rate-of-strain tensor and p 2  is the solvent viscosity. The polymeric contribution to the 
stress is given by the term T~ which satisfies the upper-convected Maxwell equation: 

where the upper-convected derivative is defined as 

pl is the polymeric contribution to the shear viscosity, and A1 is the polymer relaxation time. 
It is remarked that the Oldroyd-B model describes the rheological behaviour of dilute solutions of 

flexible, high molecular mass polymer in very viscous Newtonian solvents, even when these fluids are 
highly elastic. The model does not predict shear thinning. With only three material parameters, it is 
easy to understand, and has been able to represent a number of macroscopic observations in polymer 
fluids. 

Upon elimination of z2 in the momentum equation (2), and only (5) being needed as the stress 
equation, we obtain a set of non-linear partial differential equations as governing equations 

(7) 
Dv 
Dt 

p- = -Vp + 2p2V. D + V .  T + f ,  

V 
T + T =z 2 ~ 1  D, (8) 

v . v = o ,  (9) 

to be solved for v, T, p in a flow domain SZ(& where T = T ~ .  For the transient flow, the unknown fields 
depend on the time t and the position vector x, i.e. v(t, x), 7l(t, x) and p(t, x). 

As special cases, if 
A1 = p, = 0,  

then T vanishes, and the above set of partial differential equations (7H9) reduces to Navier-Stokes 
equations; if 

p2 = 0, 

then we obtain the equations for upper-convected Maxwell fluid. 

2.2. Boundary conditions 

In the presence of two free surfaces, the flow domain Q(t) is an unknown function of time. We need 
additional boundary conditions to determine the location of the free surfaces. A simple way of 
representing a free surface is to define its distance from a reference line as a function of position along 
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the reference line. We assume that C? is two-dimensional, and that its inner and outer free surfaces can 
be represented by height functions of time and a single space co-ordinate x = g(t, y), x = h(t, y )  (see 
Figure 1). In this case, the evolution of the deforming flow domain, i.e. the height functions, can be 
determined through kinematic conditions. This expresses the fact that the surfaces must move with the 
fluid, 

where u(t, g, y), u(t, h, y), v(t, g ,  y )  and v(t, h,  y )  are the velocity components at the free surfaces. 
The dynamic boundary conditions on the surfaces are based on the continuity of stress: 

1 
a - n ,  = -pgng+y-n, ,  

Rg 

where 
(I = -PI + T, 

is the Cauchy stress tensor, ng, nh are the unit normals to the free surfaces (see Figure l), pg, P h  are the 
ambient pressures around the free surfaces, Ap =pg  - P h  is the prescribed driving pressure difference, 
y is the coefficient of surface tension and Rg, R h  are the principal radii of curvature of the interfaces,25 

Additional boundary conditions are needed at the walls. We adopt the no-slip boundary condition 
and no-penetration condition at the two parallel walls. That is 

v(t, x,  0) = v(t, x ,  L )  = 0 (17) 

To close the set of equations (7H9), appropriate initial conditions are required. At time t = 0, the 
fluid velocity is zero, v(0, x,  y )  = 0, as well as the stress z = 0 and p = 0. At time t > 0, the dnving 
pressure p g  is applied at the internal free surface g(t, y). On the external free surface h(t, y), we 
maintain a zero pressure, so that P h  = 0. This causes the material to flow. 

3. SOLUTION PROCEDURE 

The finite element method is a powerful method for non-linear problems. This method has significant 
advantages in handling complex geometries, including free surfaces. Another major advantage of this 
method is that the natural boundary conditions on the surface are easily applied. This is important 
because, when formulating the finite element equations, a surface integral is obtained. Although each 
constitutive model may vary considerably from the other, the numerical solution procedures all follow 
the same major steps. 
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The method may be summarized as follows: the numerical calcuation proceeds in times from given 
initial data and an initial finite element mesh. The unknown flow field is interpolated by finite element 
shape functions defined on a continuously deforming mesh. The displacement of the fiee surfaces is 
unknown a priori, but is determined at each time step by the kinematic equation with the newly 
calculated unknown field. At each time step, the mesh is deformed to follow the motion of the free 
surfaces but preseves the initial topology of the element layout. This mesh motion is properly 
accounted for in the formulation of the discretized problem. 

3.1. Thejnite element method on a moving mesh 

In this section we apply the Galerkin finite element method to the viscoelastic free surface flow 
problem formulated in Section 2. A subject of utmost importance in finite element method is the 
selection of particular element geometries and the definition of the appropriate approximating 
functions within each element. After the unknown field variable has been expressed in each element in 
terms of appropriate nodal parameters and interpolation functions, the derivation of the element 
equations according to the Galerkin residual method follows a well-established procedure. 

Inspection of equations (7H9)  reveals the implicit character of the stress-strain relation. This 
prevents the direct elimination of T in the momentum equation (7) and requires the use of a 
mixed numerical technique in which extra-stress, together with velocity and pressure are basic 
unknowns. 

Let us define approximations of the finite element type for the unknowns: 

where V’, Ti and pk are unknown time-dependent nodal values, while $i, $j represent shape functions. 
Since nodal motion is allowed, the shape functions become implicit hc t ions  of time through the 
location of the nodes 

where the X ,  are nodal position vectors. In the present simulation, we use isoparametric nine-node 
quadrilateral elements to discretize the flow domain. In equations (1 9) and (20) the stress and pressure 
are given by bi-linear polynomials on the parent elements, while the velocity in (18) is approximated 
by bi-quadratic polynomials. As we shall see, the functions for moving surfaces are consistently 
interpolated by quadratic polynomials. 

The weak forms of the conservation and stress equations are obtained using the divergence theorem 
and introducing the natural boundary conditions. A surface integral involves the traction at the walls 
and fiee surfaces. Upon insertion of conditions (1 2) and (1 3), one ends up with terms like Rg and R h  

containing the second order derivatives of free surface functions. Such a degree of regularity, however, 
is avoided through integration by parts along the free surfaces.26 

Special care must be taken in the evaluation of time derivatives when the Galerkin procedure is used 
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on a moving mesh.22 To illustrate this, we focus on the term aTlat, which is given by 

aT dTJ(t) 84. 
at dt i at 
- = C - 4j + C T'(t) 2. 

Consider the isoparametric transformation used to perform the integration over a deforming element: 

Here X, are global nodal coordinates and $m are the shape functions defined on the parent element in 
( 5 ,  v ] )  space. Since the (5 ,  q) space does not deform with time, the differentiation of the isoparametric 
transformation with respect to time gives 

where ve will be referred to as the element velocity. Since the shape function 4j in (5 ,  v ] )  space does not 
depend on time, one has 

This equation provides a simple expression for a4,Iat. Now we can write (21) as 

aT dTJ( t) _ -  at - C ~ 4 j  - ve * C j TJ(t)V+j. 

Consequently, the material derivative of T becomes 

4j + (V - ve) . VT. 
DT dTJ(t) 
Dt dt 
-=c-- 

Similarly, 

Dv dvi( t) -=C  Dt i -*j+(v-ve).vv. dt 

It is observed that the treatment of the remaining terms, in particular the spatial derivatives, remains 
the same as that in the case of a fixed mesh; only the terms involving the time derivative need be 
treated as above. 

Now let us evaluate the element velocity ve. The motion of the nodes is related to the displace- 
ment of the free surfaces. In this case, the element velocity field generally differs from the fluid 
velocity. Suppose that the nodal coordinates for element e, at times tn- I and t,, are given, respec- 
tively, by 

xt-1) = ( ~ $ 1 )  yb-1) (4  - X(4 y(d  . 
9 m ) ?  * m - (  m y  m )  

The x co-ordinates are tied to the solution at the free boundaries (and their middle points for the interior 
discretization nodes), while the y co-ordinates are kept fixed. If we use a backward difference method 
for the time derivatives, then , <" . 11- 

a, X(") - X("-') dYm m 
~ = 0, -- m - 

dt Atfl ' dt 
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then we may write 
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We recognize as a special case the conventional Galerkin method on a fixed mesh when ve = 0. 
The final set of non-lineare algebraic equations, resulting from the finite element discretization and 

an implicit backward finite difference scheme, involves matrix coefficients which are evaluated using 
Gauss integration quadrature. The non-linearities in the nodal variables are only of the quadratic type, 
which facilitates considerably the implementation of the Newton-Raphson procedure. 

3.2. Determination ofpee surfaces location 

We determine the motion of the free surfaces by solving the kinematic conditions (10) and (1 1) in their 
weak Galerkin forms. The finite element discretization in this case is somewhat less obvious than that 
of the conservation and constitutive equations, and therefore is given here in more details. We define a 
one-dimensional finite element approximation for the free boundary functions 

g(t9 Y )  = c G'(t>BIb)9 h(t9 Y )  = c H'(t)PIbh (29) 
I I 

where /3, is a quadratic polynomial in y.  

mesh for flow field on the y-axis. The weak forms of the discretized kinematic conditions read 
The one-dimensional mesh is obtained by projecting each free surface node in two-dimensional 

where u, v are the approximated velocity components evaluated at the free surfaces. Note that the two- 
dimensional shape functions, when restricted to the boundaries become of the following form 

* I ( ~ ( " - ? Y )  = Bib), *4(h("-?y) = B 2 0 ,  *7(h("-?y) = P3bh 
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where, for simplicity, we have introduced the following tensors 

The solution from (34) and (35)  will be used to locate the boundary nodes in the new mesh for flow 
field. The internal node motion remains to be defined. We fix they co-ordinates of nodes and choose 
the middle position of the two moving boundaries in the x-direction as x co-ordinates for all internal 
nodes, i.e. 

x,(t)  = f (g'(t) + h'(t)), yi(t) = constants. (37) 

From the Galerkin discretization and an implicit finite difference scheme for the time derivative, the 
governing equations ( 7 x 9 )  and kinematic conditions (10) and (11) lead to two sets of algebraic 
equations which may be cast in the form 

F(V, T, P; G ,  H) = 0, 

S(G, H; V) = 0, 

(38)  

(39) 
where V, T, P, G, H are the vectors of nodal values of flow fields and the free surfaces respectively. 
The free surface variables G, H appear in (38)  through the boundary conditions at the interface and the 
mesh. 

The solution algorithm is a modification of the one used to solve the problem with one free surface.' 
We will solve the systems (38) and (39)  in an uncoupled fashion. From the knowledge of the locations 
of the free surfaces and the flow field at a discrete value of time t , ,-',  we predict the free surface 
locations, stress and velocity fields at time t,. Then we solve (38) on the predicted flow domain in 
terms of V, T and P. Finally we correct the locations of the free surfaces by solving (39) with the new 
velocity field. For further details on the algorithm see Reference 26. 

4. NUMERICAL RESULTS 
In this section, we examine the influence of surface tension, fluid inertia and elasticity. We begin by 
examining the flow of a Newtonian fluid. This will constitute a reference basis to be compared to the 
flow of viscoelastic fluids. While the formulation and numerical integration procedure, discussed in the 
previous chapters, cover the flow of an Oldroyd-B fluid, the results in the present chapter are mainly 
centered around the upper-convected Maxwellian fluid. The investigation of fluid retardation is not 
expected to give significant additional physical insight. 

All subsequent numerical results are reported in dimensionless quantities. The reference length is 
taken as L and time as d m .  There are three important dimensionless groups in the present 
formulation, namely the Reynolds number, the Weber number and the Deborah number. Another 
dimensionless group, namely the aspect (height to thickness) ratio is also important. Its effect, 
however, will not be considered in this work. 

The effect of inertia is determined through the value of the Reynolds number, Re, which is given by 

PI + P 2  

A measure of surface tension is given by the Weber number, We, which is 
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Another parameter representing surface tension effect is the capillary number: 

Ca = We/Re. 

A measure of the fluid elasticity is given by the Deborah number, De, which is the ratio of (typical) 
relaxation time to hydrodynamic timescale. In this case, we set: 

We consider the fluid to be initially contained in a rectangle bounded by two parallel plates and two 
straight free boundaries. The numerical solution was carried out using mixed nine-node quadrilateral 
elements, as explained earlier. The fluid has been at rest for all times f < 0, thus the initial values for v, 
T and p are taken as zero at each node, and the locations of free surfaces are g(0, y) = - 0.5 and 
h(0, y) = 0.5. For 1 ? 0, the fluid is dnven by the continuously applied pressure difference Ap. At each 
time step, the conserving domain is remeshed according to the new location of the free surfaces but 
conserves the same topological layout. 

4.1. Eflect of inertia 

The influence of inertia is depicted from Figure 2 which provides the time evolution of the outer 
surface at the midpoint with the Reynolds number as the changing parameter. We choose a fluid with 
viscosity p = 300 Pas, density p = 100 kg/m3 and surface tension coefficient y = 0.028 dydm. This 
gives Ca=32143, which is kept fixed. The different curves are obtained for a Newtonian fluid by 
varying the applied pressure in the range 9 Pa < Ap < 4500 Pa. Correspondingly, the Reynolds 
number is changed from Re=O.l to 2.24. As expected, the fluid deforms at a faster rate as Re 
increases. A similar behaviour is obtained at the inner surface. Figure 3 displays the evolution of the 
thickness of the fluid column at y = 5.0, Re as the parameter. Over the time range of the calculation, the 
thickness has decreased with time. The decreasing rate goes faster as Re increases. 

- 
Y 

1 

0.9 

0.8 

0 . 7  

0.6 

0.5 

0 0.2 0 . 4  0 . 6  0.8 1 1 . 2  1 . 4  
t 

Figure 2. Effect of inertial at the outer surface h. Evolution of mid-point for various Re values 
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t 

Figure 3. Evolution of thickness of fluid between two surfaces at mid-location 

Figure 4 shows the shapes of the two moving free surfaces at different time stages for Re = 1-0 and 
without surface tension effect. Both the inner and outer surfaces remain generally flat far away fiom the 
boundaries. There is, however, a boundary-layer effect near the walls, which becomes more 
pronounced with time. The inner surface shows a slight depression in the middle region in comparison 
with the outer surface. This latter exhibits a strictly flat shape in the middle region. It is interesting to 
observe from the figure that the concavity does not change with y. This is not always the case as we 
shall see next. 

1c 

0 

t - 0 . 1  

-0.5 0 0.5 1 1.5 2 
X 

Figure 4. Moving free surfaces at different time stages for Re = 1 .O in the absence of surface tension 
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0 0 .05  0.1 0.15  0 . 2  0 .25  
t 

Figure 5. Effect of surface tension at the outer surface h 

4.2. Effect of surface tension 

We examine the effect of surface tension in the case of a Newtonian fluid. In order to speed up the 
calculation, we limited the results to an inertialess fluid. We set the driving pressure Ap = 20 Pa, 
and viscosity p = 500 Pas, and vary the surface tension coefficient y in the range y E 104]dyn/ 
m. The value of the aspect ratio is kept as before, i.e. 1:lO. In this case, the Weber number 

The influence of We on the evolution of the flow can be depicted from Figures 5 and 6. The 
evolution of the midpoint of the outer surface is shown in Figure 5 .  The figure indicates that at the 
early stages of the motion (t < 0.01), surface tension does not seem to have any influence. This is 
expected since the surfaces do not exhibit any significant curvature. At roughly t > 0.01, the effect of 
surface tension becomes more evident. The curves in the figure show that as We decreases, the outer 
surface advances at a slower rate. Thus, surface tension leads to decelerate the flow. A similar trend is 
observed at the inner surface. 

A more detailed picture is obtained from Figure 6, where the actual shapes of the outer and inner 
surfaces are shown for the highest We value. In this case, the two surfaces exhibit a change in concavity 
with respect to y. This is in contrast to the situation in Figure 4, where no change in concavity was 
detected. Recall that in that case, surface tension was neglected. It is then interesting to note that the 
flattening of the free surfaces in Figure 4 is typical of a polymeric flow when surface tension is indeed 
negligible. The shapes of the surfaces in Figure 6 are typical of Newtonian fluids. 

m [ 2  x 2 x lo3]. 

4.3. Influence of elasticity 

One of the major motivations behind the present study is the investigation of fluid elasticity in free 
surface flows. The presence of elasticity as represented by equation (8) is expected to lead to additional 
numerical difficulties.” For this reason, the results in this section are rather limited due to the 
numerical instabilities encountered, particularly, at a high Deborah number. 

We examine the influence of fluid elasticity for an upper-convected Maxwellian fluid (p2 = 0) by 
varying ,I1 and keeping the dnving pressure Ap = 150 Pa, density p = 10 kg/m3, thus Re = 0.4 (fixed). 
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Figure 6 .  Moving free surfaces at different time stages for We = 2000 
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Figure 7. Effect of elasticity at the outer surface h for Re = 0.4 

Surface tension is neglected. Figure 7 shows the evolution of the midpoint at the outer surface as a 
hnction of time for De = 0.37 and 0.74. The figure indicates that fluid elasticity tends to enhance the 
motion of the fluid. This is in agreement with the results of Khayat.” 

The onset of numerical instability at higher Deborah number is typically shown in Figure 8. The 
instability tends to set in first in the vicinity of the rigid boundaries and progress towards the core 
region. This type of instability is not uncommon in the numerical simulation of free surface flows of 
viscoelastic f l~ids .~’  Often, these instabilities are of physical and not numerical nature due to the 
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Figure 8. Moving Free surfaces at different time stages for De= 1-0 

presence of elasticity. In general, oscillatory (overstable) behaviour, can set in even for statically 
stressed flows, if the Deborah number is high enough. This has been clearly demonstrated in the case 
of the inflation of a sphere of viscoelastic material2* or during the collapse of an air bubbled 
surrounded by an infinite viscoelastic medium.29 The flow in these dases is induced by a constant 
driving pressure. Of course, such an oscillatory motion is absent in Newtonian fluids. 

5 .  CONCLUSION 

In this study, the governing equations and boundary conditions for transient flow problems for an 
Oldroyd-B model with two free surfaces are formulated in two-dimensional space. Newtonian flow is 
treated as a special case. The flow is assumed incompressible and isothermal. A modified Galerkin 
method is applied for the numerical solution of two free surface problems in which the spatial mesh 
deforms in time. The entire study is restricted to simulations in which the finite element topology 
remains conserved. The problem treated is that of the deformation of a column of fluid under the action 
of pressure. 

An algorithm for the numerical solution of the problem is provided and completely implemented. 
We have examined the influence of inertia, surface tension and fluid elasticity on the flow by varying 
one parameter and keeping the remaining parameters fixed. As expected, inertia tends to accelerate the 
flow. In the absence of surface tension, the inner and outer surfaces do not exhibit any change in 
concavity. It was found that surface tension tends to oppose the effect of the driving pressure, thus 
slowing down the flow. Finally, fluid elasticity was found to enhance the rate of deformation. 

Over the past decade, much research has been focused on the development of numerical techniques 
for predicting the flow of viscoelastic fluids in complex geometries. Despite the progress, the 
numerical prediction of viscoelastic effects in complex geometries has proven to be very difficult in 
view of the non-linearities related to the fluid memory. Its success is not guaranteed. As we could see in 
our result in the non-Newtonian case, an oscillatory instability occurred which is difficult to handle. 
We also realized that the difficulties we observed are not uncommon. This problem remains an open 
issue. The present work constitutes only a modest attempt in solving transient free surface flows of 
viscoelastic fluids as they arise in practice. The formulation, in its present form, is rather limited with 
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regard to problems involving continuously deforming fluids over a long duration. In such problems, the 
free surface tends to come in contact with the bounding cavity walls due to the fountain flow effect. 
However, the present formulation can be extended by incorporating appropriate contact conditions at 
the intersection of free surface and solid wall. In this case, a contact angle may be prescribed or the slip 
condition may be imposed at the contact node. As it stands, the present method may be directly 
applicable to problems in blow molding and gas assisted injection molding in cases where the polymer 
does not deform considerably. 
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